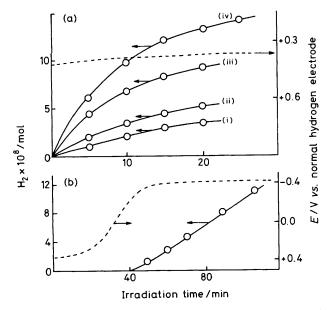
Light-induced Hydrogen Evolution in Oxidising Media promoted by Catalytic Sites encapsulated by Phospholipid Membranes

Victor E. Maier and Vladimir Ya. Shafirovich*


Institute of Chemical Physics, U.S.S.R. Academy of Sciences, 142432 Chernogolovka, U.S.S.R.

Encapsulation of the well known photochemical system consisting of electron donor [ethylenediaminetetra-acetic acid (EDTA)], photosensitizer [Ru(bpy)₃²⁺ (bpy = 2,2'-bipyridine)], electron acceptor [Rh(bpy)₃³⁺], and catalytic sites (Pt particles, produced by reduction of K₂PtCl₄) in a DPPC (dipalmitoyl-D,L- α -phosphatidylcholine) membrane allows light-induced H₂ evolution in the presence of an oxidant [K₃Fe(CN)₆] in the bulk solution.

Separation of the electron transfer reactions in chloroplasts and the redox potential of a bulk solution is an essential property of the *in vivo* system providing the energy-trapping reactions of photosynthesis. This property of the photosynthetic components can be simulated *in vitro* by encapsulating a catalytic site of the photosystem inside a lipid vesicle.

We now describe light-induced H_2 evolution in the presence of an oxidant in the bulk solution promoted by catalytic sites encapsulated in a DPPC (dipalmitoyl-D,L- α -phosphatidylcholine) membrane. The well known photochemical system¹ of ethylenediaminetetra-acetic acid (EDTA), Ru(bpy)₃²⁺ (bpy = 2,2'-bipyridine), Rh(bpy)₃³⁺, Pt catalyst, and Fe(CN)₆³⁻ oxidant, which mimics photosystem I of green plant photosynthesis,² has been used.

Pt-deficient vesicles were prepared by sonication (30 min) of DPCC (1.25×10^{-5} mol) in 0.04 M acetate buffer solution

Figure 1. H₂ evolution and redox potential, *E*, of the bulk solution in (a) vesicular and (b) homogeneous systems in the presence of oxidant $[10^{-4} \text{ M Fe}(\text{CN})_6^{3-}]$ as a function of irradiation (λ 436 nm, *I*₀ 1.8 × 10⁻⁷ Einstein s⁻¹) time. Solution volume 5 ml. (a) [DPPC] = 2.5 × 10⁻³ M; 0.04 M acetate buffer (pH 5); localised concentrations of encapsulated reactants: [EDTA]_I = 0.1 M; [Ru(bpy)₃²⁺]₁ = 0.01 M; [Rh(bpy)₃³⁺]₁ = 0.02 M. [K₂PtCl₄] in the initial solution used for sonication: (i) 0; (ii) 1 × 10⁻³; (iii) 2 × 10⁻³; (iv) 5 × 10⁻³ M. (b) [Ru(bpy)₃²⁺] = 1 × 10⁻⁵ M; [MV²⁺] = 1.10⁻⁴ M; [EDTA] = 0.01 M; [Pt] = 1 × 10⁻⁵ M; [PVA] = 0.5 g/l; 0.04 M phosphate buffer (pH 6).

(2.5 ml; pH 5) containing 0.1 M EDTA, 0.01 M Ru(bpy)₃²⁺, and 0.02 M Rh(bpy)₃³⁺ at 58—62 °C and separated by chromatography on a Sephadex G-150 column. Visible light irradiation (λ 436 nm, I_0 1.8 × 10⁻⁷ Einstein s⁻¹) of a deoxygenated solution containing Pt-deficient vesicles resulted in the reduction of Rh(bpy)₃³⁺ to Rh(bpy)₂⁺ (decay of λ_{max} . 306 and 320 nm),^{1b} as shown in equations (1)—(5). The addition of K₃Fe(CN)₆ to the bulk solution did not affect the accumulation of Rh(bpy)₂⁺ inside the vesicle, *i.e.* the DPPC vesicle wall is of sufficient thickness to suppress electron transfer from Rh(bpy)₂⁺ to Fe(CN)₆³⁻.[†]

$${}^{*}Ru(bpy)_{3}^{2+} + Rh(bpy)_{3}^{3+} \rightarrow Ru(bpy)_{3}^{3+} + Rh(bpy)_{3}^{2+} (1)$$

$$\operatorname{Ru}(\operatorname{bpy})_{3^{3+}} + \operatorname{EDTA} \to \operatorname{Ru}(\operatorname{bpy})_{3^{2+}} + \operatorname{EDTA}_{\operatorname{ox}}$$
 (2)

 $Ru(bpy)_{3^{3+}} + Rh(bpy)_{3^{2+}} \rightarrow Ru(bpy)_{3^{2+}} + Rh(bpy)_{3^{3+}}$ (3)

$$Rh(bpy)_{3^{2+}} \rightarrow Rh(bpy)_{2^{2+}} + bpy$$
(4)

$$Rh(bpy)_{3^{2+}} + Rh(bpy)_{2^{2+}} \rightarrow Rh(bpy)_{3^{3+}} + Rh(bpy)_{2^{+}}$$
 (5)

A small amount of hydrogen [quantum yield, $\Phi(H_2)$ 2.8 × 10⁻³] was produced during irradiation of Pt-deficient vesicles in both pure buffer and Fe(CN)₆³⁻ solution owing to further reduction of the $Rh(bpy)_2^+$ complex by $Rh(bpy)_3^{2+}$ to Rh hydride^{1b} (Figure 1a).

H₂ production can be increased by encapsulating the catalytic Pt site inside a vesicle. It has been shown recently that encapsulated catalytic sites can be prepared by treatment of $K_2PtCl_4^3$ and by photochemical reduction of $Pt(NH_3)_4Cl_2^4$ or RhCl₃.⁵ In the present work it has been found that a very active caged catalyst is formed by sonication of DPPC in 0.04 M acetate buffer solution (pH 5.0) containing 10^{-3} — 5×10^{-3} M K_2PtCl_4 [‡] and the other necessary components [0.1 M EDTA, 0.01 M Ru(bpy)₃²⁺, and 0.02 M Rh(bpy)₃³⁺].§ The Pt concentration in the vesicle solution after gel filtration is $1-2 \times 10^{-5}$ M as measured by atomic absorption spectrometry.

The Rh(bpy)₃²⁺ produced by irradiation of the Ptcontaining vesicles [reaction (1)] reduces the Pt catalyst into an active form. The resulting Pt particles (10—30 Å) are well defined in electron micrographs and catalyse H₂ formation according to equation (6). The rate of H₂ evolution is not affected by addition of K₃Fe(CN)₆ to the bulk solution. Furthermore, the redox potential, *E*, of the solution remains practically the same on irradiation of the vesicular system (Figure 1a, broken line). H₂ evolution in the oxidising medium is the main advantage of the use of caged active sites. Indeed H₂ evolution in the classical homogeneous photochemical system² [EDTA, Ru(bpy)₃²⁺, MV²⁺ (MV = methyl viologen), Pt–PVA (PVA = polyvinyl alcohol)] has a significant rate only when *E* is sufficiently negative (Figure 1b).

$$2\text{Rh}(\text{bpy})_{3^{2+}} + 2\text{H}_2\text{O} \xrightarrow{\text{Pt}} 2\text{Rh}(\text{bpy})_{3^{3+}} + 20\text{H}^- + \text{H}_2$$
 (6)

The rate of H₂ evolution increases with increasing Pt concentration in the vesicles (Figure 1a). $\Phi(H_2)$ in the vesicular system prepared by sonication of the required components in 5×10^{-3} M K₃PtCl₄ has a value of 0.02; *i.e.* it is less than the cage escape yield, $\Phi(cage) = 0.15$,^{1b} of Rh(bpy)₃²⁺ and Ru(bpy)₃³⁺ in reaction (1). At localised concentrations, [Rh(bpy)₃³⁺]₁ = 0.02 M, practically all the *Ru(bpy)₃²⁺ is quenched (k_q 6.2 × 10⁻⁸ dm³ mol⁻¹ s⁻¹)^{1b} so the difference between $\Phi(H_2)$ and $\Phi(cage)$ arises from the competition of Rh(bpy)₃²⁺ decay in reaction (6) and reactions (3)—(5) at high local concentrations of [Rh(bpy)₃²⁺]₁ (1 molecule in the vesicle inner volume corresponds to 10^{-3} M). The decrease in the rate of H₂ evolution during irradiation of Pt-vesicles (Figure 1a) is due to the formation of Rh¹ which is inactive in Pt-catalysed H₂ production.^{1b} The turnover number (per one electron) is about 7 for Rh(bpy)₃³⁺ and 14 for Ru(bpy)₃²⁺.

Significant improvement of the system described here may be expected on incorporation of a water-insoluble electron donor, D¹, in the vesicle wall, and an electron donor, D², in the bulk solution.¶ The sequence of redox potentials $E[\operatorname{Ru}(\operatorname{bpy})_{3^{3+/2+}}] > E(D^{1+/0}) > E(D^{2+/0})$ could allow the unidirectional electron transfer from D² to Ru(bpy)_{3^{3+}} produced in reaction (1) whereas the competition of D¹

[†] Traditional electron acceptors such as viologens² cannot be used instead of Rh(bpy)₃³⁺. The methyl viologen radical-cation, MV⁺⁺, diffuses rapidly across the vesicle wall. Radicals of viologens with charged groups (1,1'-ethylsulpho-4,4'-bipyridine, 1-β-ethylsulpho-1'-methyl-4,4'-bipyridine, 1,1'-γ-tetra-aminopropyl-4,4'-bipyridine, or 1-γ-tetra-aminopropyl-1'-methyl-4,4'-bipyridine) reduce Fe(CN)₆³⁻ in the bulk solution at a remarkable rate though they all remain in the vesicles during irradiation. The mechanism of these reactions is being investigated.

[‡] The activity of the catalyst prepared from $Pt(NH_3)_4^{2+}$ is rather low owing to incomplete reduction of the Pt complex.

[§] The Pt encapsulation depends on $[K_2PtCl_4]$, [EDTA], pH, and sonication temperature. The effects of these experimental conditions are being investigated.

[¶] Generation of the strong oxidant in the vesicle system (model of photosystem II) with a water-insoluble electron acceptor, A^1 , incorporated in the vesicle wall and an electron acceptor, A^2 , in the bulk solution has recently been developed.⁶

oxidation by $Ru(bpy)_{3}^{3+}$ and back reaction (3) could allow reductant accumulation inside the vesicle with subsequent catalytic H₂ production. Such a construction of the photocatalytic system (model of photosystem I) may provide continuous H₂ production, which is independent of the donor content in the vesicle.

Received, 17th October 1984; Com. 1464

References

(a) J.-M. Lehn and J.-P. Sauvage, Nouv. J. Chim., 1977, 1, 449; (b)
 S.-F. Chan, M. Chou, C. Creutz, T. Matsubara, and N. Sutin, J. Am. Chem. Soc., 1981, 103, 369.

- 2 For recent reviews see: 'Photogeneration of Hydrogen,' eds. A. Harriman and M. A. West, Academic Press, New York, 1982; 'Energy Resources through Photochemistry and Catalysis,' ed. M. Grätzel, Academic Press, New York, 1983.
- 3 K. Kurihara and J. H. Fendler, J. Am. Chem. Soc., 1983, 105, 6152.
- 4 V. E. Maier and V. Ya. Shafirovich, Dokl. Akad. Nauk SSSR, 1984, 227, 125.
- 5 Y. M. Tricot and J. H. Fendler, J. Am. Chem. Soc., 1984, 106, 2475.
- 6 E. E. Yablonskaya and V. Ya. Shafirovich, *Kinetika i kataliz*, 1983,
 24, 1018; E. E. Yablonskaya and V. Ya. Shafirovich, *Nouv. J. Chim.*, 1984, 8, 117; V. Ya. Shafirovich, V. A. Kuzmin, P. P. Levin, and N. K. Khannanov, *Dokl. Akad. Nauk SSSR*, 1984, 276, 911.